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Abstract
Fusion is a program optimisation technique commonly im-
plemented using special-purpose compiler support. In this
paper we present an alternative approach, implementing
fold-based fusion as a standalone library. We use staging
to compose operations on folds; the operations are partially
evaluated away, yielding code that does not construct unnec-
essary intermediate data structures. The technique extends
to partitioning and grouping of collections.

Categories and Subject Descriptors D.3.4 [Programming
Languages]: Processors – Code generation, Optimisation,
Parsing

Keywords fusion; fold; multi-stage programming

1. Introduction
Suppose you are given a list of people, along with a list of
movies each of these people like. If you want to find out how
many people like each movie, here is a Scala snippet to do
the job:

def movieCount(people2Movies: List[(String, List[String])]):

Map[String, Int] = {

val flattened = for {

(person, movies) <- people2Movies

movie <- movies

} yield (person, movie)

val grouped = flattened groupBy (_._2)

grouped map { case (movie, ps) => (movie, ps.size) }

}

The function uses two intermediate data structures, flattened
and grouped. These data structures are helpful in organising
the program and making it more readable. On the other hand,
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their allocation and construction incurs a significant memory
and processing overhead. Yet it is possible to implement
the movieCount function without creating any intermediate
structures. The following implementation is arguably harder
to read, but more efficient:

def movieCount2(people2Movies: List[(String, List[String])]):

Map[String, Int] = {

var tmpList = people2Movies

val tmpRes: Map[String, Int] = Map.empty

while(!tmpList.isEmpty) {

val hd = tmpList.head

var movies = hd._2

while (!movies.isEmpty) {

val movie = movies.head

if (tmpRes.contains(movie)) {

tmpRes(movie) += 1

} else tmpRes.update(movie, 1)

movies = movies.tail

}

tmpList = tmpList.tail

}

tmpRes

}

Fusion is a program transformation that converts functions
written in a movieCount style to efficient equivalents in the
movieCount2 style. Its goal is to avoid the creation of costly
intermediate data structures. Fusion has been extensively
studied, both theoretically [6] and in practice [2, 5, 13].

Practical implementations of this technique tend to rely
on an optimising compiler for a pure, functional language.
In non-pure languages, it is more difficult to implement fu-
sion as part of the compiler, due to the possible presence
of side-effects, open recursion in datatypes, virtual method
dispatch, etc. There are however many pure, functional sub-
domains in such languages that could greatly benefit from
fusion. Examples for such subdomains include collection li-
braries and query-like languages. Essentially, programs that
process data through "pipelines" of operations are amenable
to fusion.

In this paper, we present fold-based fusion as a library.
This decouples the optimisation from an underlying com-
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piler, making it portable, and readily applicable to different
contexts. Our implementation hinges on combining two in-
sights:
1. By CPS-encoding data, we can reduce fusion of arbitrary

data types to fusion of functions.
2. Multi-staged programming [15] allows us to partially

evaluate function composition, thus effectively achieving
fusion of functions through partial evaluation.

Contributions. This suggests a generative programming [9]
approach to fusion:
• We present an API for staged, CPS-encoded lists (Sec-

tion 3). Staging (Section 2) is used as a means to sys-
tematically separate function composition from data pro-
cessing . A programmer using our library has the im-
pression that he is composing operations over folds. In
fact, he/she composes operations over code generators
of folds. This composition is partially evaluated away at
staging time, yielding code that contains no intermediate
data structures. Our fusion technique remains as power-
ful as foldr/build fusion [5]: it does well on functions that
are "good producers".

• Some producer functions are less good than others: they
produce multiple outputs. Partitioning and grouping fall
under this category. We discuss variants of these func-
tions that are easier to fuse (Section 4).

• These variants introduce extra boxes around data in order
to preserve operating under a single pipeline. We present
a technique to systematically eliminate them. Once again,
the key is to CPS-encode the data representations of the
boxes, and stage these representations. We explain the
technique for the Either type in particular (Section 5).

By embracing generative programming as a paradigm and
combining it with functional APIs, we get an implementa-
tion that has a library look-and-feel.

2. Staging
We implement our fusion library using the Lightweight
Modular Staging (LMS) framework [10]. This section pro-
vides a short overview of the framework and necessary back-
ground on the partial evaluation techniques used in Sec-
tions 3–5.

2.1 Partial evaluation and multi-stage programming
Partial evaluation [3] is a technique used primarily to per-
form program optimisation. In a program receiving static
and dynamic inputs, computations over statically known val-
ues are evaluated away, thereby specialising the program for
that particular static input.

A closely related concept is multi-stage programming
or staging [15], a form of generative programming. In a
multi-staged program, one explicitly specifies which parts
of the program are to be evaluated at the current stage, and
which parts should be evaluated at a later stage. Running
a staged program generates a new program, where current

stage computations have been evaluated away. MSP can
therefore be used to achieve controlled partial evaluation.

2.2 LMS
LMS is a staging/runtime code generation framework writ-
ten in Scala. The evaluation of expressions is controlled
through the use of a special abstract type Rep[T]:
• an expression of type T evaluates to a constant of type T

in the generated code,
• an expression of type Rep[T] generates code for an expres-

sion of type T.
Figure 1 illustrates this principle. Starting from a program
as in the bottom-left corner, a programmer adds Rep types,
as in the top-left corner. The LMS framework will run this
program, yielding later-stage code (top-right corner). Only
when this code is executed do we get the final result of the
program. Note that when we compose expressions of type
Rep[T], we compose code generators. Scala’s type system and
implicits allow LMS programs to look essentially like their
unstaged counterparts.

Staged Functions. A key concept in LMS is the distinction
between the function types Rep[T => U] and Rep[T] => Rep[U].
The former type is that of a staged function, i.e. it will
generate a function in later-stage code. The latter type is that
of an unstaged function on staged types. Applying it to an
input of type Rep[T] expands the function definition at the
call site, effectively inlining it.

Unstaged functions play a key role in the design of staged
libraries. Using them, we get inlining for free, and avoid al-
locating unnecessary closures. This idea extends to higher-
order functions, which may take unstaged functions as pa-
rameters.

The LMS intermediate representation. Every instance of
the abstract type Rep[T] corresponds to a concrete datatype,
which can be pattern matched against and rewritten. The col-
lection of such datatypes forms the LMS intermediate rep-
resentation (IR). A common use case for rewrites is opti-
misations. For example, a conditional expression where the
condition is constant may be replaced by one of its branches.

The core LMS library defines intermediate nodes and
rewrite rules for many common programming constructs,
such as conditionals, Boolean expressions, arithmetic ex-
pressions and list operations. These building blocks can be
used out of the box in order to build more complex code
generators [12].

3. Staging FoldLeft
Having introduced Lightweight Modular Staging, we now
move on to the main topic of this paper, which is to achieve
fusion on operations over collections. For simplicity, we
restrict ourselves to lists. We consider a type of fusion which
is applicable to operations over lists that are expressible as
folds, i.e. fold-based fusion.
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Figure 1. Staging in LMS

3.1 FoldLeft
Many operations on lists can be implemented in terms of the
generic fold function [5]. For lists, there are two variants of
the fold operation, foldLeft and foldRight. The two operations
are equivalent in that one can be implemented using the
other. We choose foldLeft: we will see later in this section
why this representation benefits us more.

The foldLeft function on lists can be implemented as
follows:

def foldLeft[A, S](ls: List[A])(z: S, comb: (S, A) => S): S =

ls match {

case Nil => z

case x :: xs => foldLeft(xs)(comb(z, x), comb)

}

It takes a zero (or initial) element of type S, and returns this
element if the input list is empty. If the list contains some
elements, they are recursively combined with the element z
using the binary operator comb. The elements are combined
to the left, hence the name of the function.

As mentioned above, various operations on lists can be
implemented using foldLeft. We defer the presentation of the
full API to Section 3.3, and give an example implementation
of the map function instead:

def map[A, B](ls: List[A], f: A => B): List[B] =

foldLeft[A, List[B]](ls)(

Nil,

(acc, elem) => acc :+ f(elem)

)

Starting with an empty list, the combination function simply
appends to the accumulator the results of applying f to the
elements of the input list.

CPS-encoded lists. Consider the type signature of the
foldLeft function:

List[A] => (S, (S, A) => S) => S

The signature tells us that, given a list over any type A,
foldLeft returns a function that will fold the elements of that
list into a structure of some type S. The type of this function

turns out to be the CPS encoding (also known as the Church
encoding) of lists, or equivalently the list functor [8]:

type FoldLeft[A, S] = (S, (S, A) => S) => S

Here, S denotes the eventual result type of operations over
the list. For instance in the above map example, S = List[A].
In essence, foldLeft maps plain lists to CPS-encoded lists.

3.2 Foldleft, staged
Having captured the essence of fold with the type alias
FoldLeft, we can now stage this representation. Following the
ideas outlined in Section 2, we come up with the following
type alias:

type FoldLeft[A, S] =

(Rep[S], (Rep[S], Rep[A]) => Rep[S]) => Rep[S]

Note that the name is deliberately overloaded. For the rest of
the paper, unless explicitly mentioned, FoldLeft refers to the
staged version. As promised, we use unstaged functions.

Figure 2 shows an implementation of staged FoldLeft

in LMS. The enclosing trait FoldLefts mixes in some of
LMS’ building blocks which help in composing code gener-
ators [12]. These are the only blocks required for FoldLeft. In
particular, we want to be able to write a bit of mutable code
(LiftVariables) and while loops (While). The Manifest annota-
tion on polymorphic types is specific to code generation.

FoldLeft is not a type alias, but an abstract class now. This
way we can add methods to its API. The type parameter A

represents the type of elements that pass through it. Every
instance of FoldLeft must implement an apply method, corre-
sponding to the application of fold. As explained above, the
type parameter S for this method corresponds to the eventual
structure resulting from the fold.

We create a FoldLeft over a list with the fromList func-
tion. Since FoldLeft corresponds to the return type of the
foldLeft function on lists, fromList is a staged code generator
for foldLeft. Here we choose an implementation using loops
instead of recursion. This is because the target languages for
our code generation (Scala, Java or C) are better at execut-
ing while loops than recursive functions. This also explains
our choice of foldLeft: contrary to foldRight, it can be imple-
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trait FoldLefts

extends ListOps

with IfThenElse

with BooleanOps

with Variables

with OrderingOps

with NumericOps

with PrimitiveOps

with LiftVariables

with While {

type Comb[A, S] = (Rep[S], Rep[A]) => Rep[S]

abstract class FoldLeft[A: Manifest] { self =>

def apply[S: Manifest](z: Rep[S], comb: Comb[A, S]): Rep[S]

//operations on foldleft go here

}

}

//companion object

object FoldLeft {

//create a fold from a list

def fromList[A: Manifest](ls: Rep[List[A]]) =

new FoldLeft[A] {

def apply[S: Manifest](z: Rep[S], comb: Comb[A, S]):

Rep[S] = {

var tmpList = ls

var tmp = z

while (!tmpList.isEmpty) {

tmp = comb(tmp, tmpList.head)

tmpList = tmpList.tail

}

tmp

}

}

...

}

Figure 2. FoldLeft as a staged abstraction

mented in a tail-recursive manner, hence easily written as a
low-level loop.

Note that fromList takes as parameter a Rep[List[A]], and
not a List[Rep[A]]. Indeed, the input list to a pipeline of folds
is not usually known statically.

3.3 The API of staged FoldLeft
We now extend our staged FoldLeft implementation by
adding a list-like API. Note that these methods can be added
to an unstaged FoldLeft as well. The only difference is the
use of staged types and unstaged functions. Figure 3 shows
the API. We add fromRange to the companion object, which
creates a FoldLeft from an integer interval. The rest of the
API consists of the usual suspects, map, filter, flatMap and
concat. We remark that:

//as methods of FoldLeft

def map[B: Manifest](f: Rep[A] => Rep[B]) =

new FoldLeft[B] {

def apply[S: Manifest](z: Rep[S], comb: Comb[B, S]) =

self.apply(

z,

(acc: Rep[S], elem: Rep[A]) => comb(acc, f(elem))

)

}

def filter(p: Rep[A] => Rep[Boolean]) =

new FoldLeft[A] {

def apply[S: Manifest](z: Rep[S], comb: Comb[A, S]) =

self.apply(

z,

(acc: Rep[S], elem: Rep[A]) =>

if (p(elem)) comb(acc, elem) else acc

)

}

def flatMap[B: Manifest](f: Rep[A] => FoldLeft[B]) =

new FoldLeft[B] {

def apply[S: Manifest](z: Rep[S], comb: Comb[B, S]) =

self.apply(

z,

(acc: Rep[S], elem: Rep[A]) => f(elem)(acc, comb)

)

}

def concat(that: FoldLeft[A]) = new FoldLeft[A] {

def apply[S: Manifest](z: Rep[S], comb: Comb[A, S]) = {

val folded: Rep[S] = self.apply(z, comb)

that.apply(folded, comb)

}

}

//in the companion object

def fromRange(a: Rep[Int], b: Rep[Int]) =

new FoldLeft[Int] {

def apply[S: Manifest](z: Rep[S], comb: Comb[Int, S]) = {

var tmpInt = a

var tmp = z

while (tmpInt <= b) {

tmp = comb(tmp, tmpInt)

tmpInt = tmpInt + 1

}

tmp

}

}

Figure 3. The API of staged FoldLeft
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def generatedFunction(x0:Int, x1:Int): Int = {

var x2: Int = x0

var x3: Int = 0

while (x2 <= x1) {

val x7 = x3

val x8 = x2

var x9: Int = 1

var x10: Int = x7

while (x9 <= x8) {

val x14 = x10

val x15 = x9

val x16 = x15 % 2

val x17 = x16 == 1

val x20 = if (x17) {

val x18 = x15 * 3

val x19 = x14 + x18

x19

} else {

x14

}

x10 = x20

val x22 = x15 + 1

x9 = x22

}

val x26 = x10

x3 = x26

val x28 = x8 + 1

x2 = x28

}

val x32 = x3

x32

}

Figure 4. Example code generated by LMS.

• Most of the operations take unstaged functions over
staged types as arguments. The body of these functions
is inlined at application site as a result.

• The type of the function argument f of flatMap deserves
some elaboration. Expanding the type of FoldLeft, we get
the following type for f:

f: Rep[A] => (Rep[S], Comb[B, S]) => Rep[S]

which is a curried, unstaged function. By fully applying
this function, we inline not only the body of f, but also
the body of the resulting FoldLeft. This way, we avoid
generating code for an intermediate collection. The same
holds for concat.

• The function passed to flatMapmust return FoldLeft. If this
FoldLeft is created from a call to fromList, an intermediate
list will be generated as well. A programmer must there-
fore be careful how to create this FoldLeft.

A code generation example As mentioned in Section 2,
LMS takes as input a staged program, and generates a later-
stage program. Consider the following example that uses
FoldLeft:

def foldLeftExample(a: Rep[Int], b: Rep[Int]): Rep[Int] = {

val fld = FoldLeft.fromRange(a, b)

val flatMapped = fld flatMap (i => FoldLeft.fromRange(1, i))

val filtered = flatMapped filter (_ % 2 == 1)

filtered.map(_ * 3).apply[Int](

0, (acc, x) => acc + x

)

}

Given an integer interval, it creates nested intervals. It then
sums all odd elements of the nested intervals, after having
multiplied them by 3. Note that in the flatMap call, we pass
a function that creates a fold from an interval, rather than
from a list. Running LMS will partially evaluate the staged
FoldLeft away, yielding code as in Figure 4. As we can see,
we are left with two nested while loops, exactly what we
wished for.

The power of staged FoldLeft. We now have a library over
a staged fold abstraction, which enables us to write pipelines
of operations over lists. Through partial evaluation, we gen-
erate code that is devoid of intermediate data structures. The
main difficulty consisted in identifying the correct types for
unstaged function arguments.

It is natural to wonder how many of the common oper-
ations over lists are fusible by this technique in practice.
Our staged FoldLeft, being purely fold based, is as power-
ful as foldr/build fusion [5]. Indeed, we face the same prob-
lem with zips and other functions that consume multiple in-
puts. Fold-based fusion works well for operations that act as
"good producers".

4. Partitioning and Grouping
In the previous section, we only considered list operations
that produce exactly one list as their result. It is not much
of a surprise that such functions should be amenable to
fusion since their composition will always result in "straight
pipelines", i.e. functions which again take lists to lists. This
is sometimes referred to as vertical fusion.

In this section we turn to operations that produce multiple
outputs, and hence allow us to build forked pipelines. The
main challenge consists in keeping all operations in the same
pipeline, while avoiding the introduction of intermediate
data structures to do so. This is also known as horizontal
fusion. We start with the partition function.

4.1 Partition
The partition function on lists takes a list and a predicate,
and returns two lists, one containing the elements satisfying
the predicate, and the other containing those that do not.
We can implement this function using foldLeft as defined in
Section 3.1:

def partition[A](ls: List[A], p: A => Boolean):

(List[A], List[A]) =

foldLeft[A, (List[A], List[A])](ls)(

(Nil, Nil),
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{case ((trues, falses), elem) =>

if (p(elem)) (trues ++ List(elem), falses)

else (trues, falses ++ List(elem))

}

)

The initial element is a pair of empty lists. Based on the
predicate, we add each element of the input list to either the
first of the second accumulating list.

Here is an example usage of partition:

val myList: List[Int] = ...

val (evens, odds) = partition(myList, (x: Int) => x % 2 == 0)

(evens map (_ * 2), odds map (_ * 3))

In the context of fusion, we naturally want to avoid creating
the evens and odds lists.

A naive attempt. One possibility for implementing partition

on FoldLeft is to have it return two separate FoldLefts:

//as a method on FoldLeft

def partition(p: Rep[A] => Rep[Boolean]):

(FoldLeft[A], FoldLeft[A]) = {

val trues = this filter p

val falses = this filter (a => !p(a))

(trues, falses)

}

This looks great, because though we create a pair, it is
unstaged and so is partially evaluated away. Moreover, we
can access both FoldLefts separately and further construct
their pipelines separately.

Unfortunately, if both trues and falses are used later on,
code for two separate traversals over the entire pipeline will
be generated, which defeats the point of fusion. It is prefer-
able to have a single traversal.

Partition with Either. If our objective is to generate a sin-
gle traversal, we must fix the return type for partition to be
FoldLeft, our current abstraction for loops. This particular
FoldLeft does not see elements of type A anymore, but ele-
ments that have either passed a predicate, or not. The Either

type captures this notion very well: instances of Left rep-
resent elements satisfying the predicate, instances of Right

represent elements that do not. We can rewrite the example
above as follows:

def partitionE[A](ls: List[A], p: A => Boolean):

List[Either[A, A]] =

ls map { elem => if (p(elem)) Left(elem) else Right(elem) }

val myList: List[Int] = ...

val partitioned = partitionE(myList, (x: Int) => x % 2 == 0)

val mapped = partitioned map {

case Left(x) => Left(x * 2)

case Right(x) => Right(x * 3)

}

foldLeft[Either[Int, Int], (List[Int], List[Int])](mapped)(

(Nil, Nil),

{case ((trues, falses), elem) =>

elem.fold(

x => (trues ++ List(x), falses),

x => (trues, falses ++ List(x))

)

}

)

The partitionE function is simply an application of the map

function, turning an element of type A into an element of
type Either[A, A]. It has the effect of delaying the creation of
two separate lists to a later application of foldLeft. Between
the final application and the partition point, we use the map

function on Either to thread computations through to the
actual values.

Note that eventually, we are left with no option but to fork
the pipeline into two lists, through a final call to foldLeft.
Here, the combination operation concatenates elements to
the resulting lists through the use of the fold function on
Either.

The implementation of partitionE above gives us a way
to implement the same for staged FoldLeft. Figure 5 shows
the code. The functions left and right create instances of
Rep[Either].

The reader will surely object to this implementation.
We have not really eliminated intermediate data structures.
Rather, we have created new ones, in the form of instances of
Rep[Either]. The insight is that we know exactly what type of
boxes we create. We discuss shortly how to eliminate them
(Section 5). Before that, we discuss another multiple output
producer function, groupBy.

//as methods of the FoldLeft class

def partitionBis(p: Rep[A] => Rep[Boolean]):

FoldLeft[Either[A, A]] = this map { elem =>

if (p(elem)) left[A, A](elem) else right[A, A](elem)

}

def groupWith[K: Manifest](f: Rep[A] => Rep[K]):

FoldLeft[(K, A)] = this map { elem => (f(elem), elem) }

Figure 5. The partition and groupWith methods on FoldLeft

4.2 GroupBy
The partition function on FoldLeft enables us to write pipelines
so that no intermediate lists are created, and the single traver-
sal requirement is met. We now focus our attention on a
cousin of partition’s, groupBy.

While partitioning splits a list into two groups, groupBy

partitions a list into possibly many groups. This operation
is also particularly interesting because it is a common query
operation. It is of course used in query languages, but it is
also not uncommon in spreadsheet-like languages to visu-
alise results better. Recall the example in Section 1, where
we group movies by people who like them, and then count
the number of people per group.
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For lists, the groupBy function can be implemented as
follows, once again using foldLeft:

def groupBy[A, K](ls: List[A], f: A => K): Map[K, List[A]] =

foldLeft[A, Map[K, List[A]]](ls)(

Map.empty[K, List[A]],

{case (dict, elem) =>

val k = f(elem)

if (dict.contains(k))

dict + ((k, dict(k) ++ List(elem)))

else

dict + ((k, List(elem)))

}

)

It takes an input list, and a function f that attributes a key
to a value. It returns a collection of key-value pairs, where
the value is itself a collection of values from the input list ls.
The initial element passed to the fold is an empty map. The
combination operator adds a new key-value pair to the map
if the key has not been created yet. Otherwise, it appends the
element to the pre-existing list.

We can reimplement the example from the introduction
using the above implementation of groupBy:

def movieCount(people2Movies: List[(String, List[String])]):

Map[String, Int] = {

val flattened = for {

(person, movies) <- people2Movies

movie <- movies

} yield (person, movie)

val grouped = groupBy[(String, String), String](

flattened, _._2

)

grouped map { case (movie, ls) => (movie, ls.size) }

}

Note that we use a map function on HashMap after the call
to groupBy. Once again, in terms of fusion, we would like to
avoid creating the intermediate HashMap[Int, List[Int]]. One
possibility for the above example is to implement a specific
reduceBy function that takes an extra reduction function and
applies it. Many collection libraries do indeed contain this
alternative. We may however want to first group elements,
perform group-specific operations on the values, and then
reduce them. In which case a reduceBy will not suffice.

Delaying the application of FoldLeft. As in the case for
partition, the key idea is to keep everything on a single fold
pipeline for as long as possible. To achieve this, we once
again resort to introducing an extra box type, through the
use of a function named groupWith. This function is shown in
Figure 5. The result of applying a groupWith is a FoldLeft over
key-value pairs. Values from the input fold are simply tagged
with their group, and sent further down the pipeline. The
above grouping example can be written for staged FoldLeft

as below:

def repMovieCount(

people2Movies: Rep[List[(String, List[String])]])

: Rep[HashMap[String, Int]] = {

val fld = FoldLeft.fromList[(String, List[String])](

people2Movies)

val flattened: FoldLeft[(String, String)] = for {

elem <- fld

movie <- FoldLeft.fromList[String](elem._2)

} yield (elem._1, movie)

val grouped = flattened groupWith { elem => elem._2 }

grouped.apply[HashMap[String, Int]](

HashMap[String, Int](),

(dict, x) =>

if (dict.contains(x._1))

dict + (x._1, dict(x._1) + 1)

else

dict + (x._1, 1)

)

}

Summary. In this section, we integrated multiple output
producers to the staged fold API. This was done by imple-
menting variants of the functions that delay the final appli-
cation of fold by boxing elements into a type that preserves
information about the multiple output separation. We also
preserve the FoldLeft representation in the process.

These extra boxes unfortunately manifest in the generated
code. In the next section we show how to eliminate this
overhead.

5. Removing boxes
So far, we have successfully integrated partition and groupBy

into the staged FoldLeft abstraction. Unfortunately this leads
to the creation of boxes around elements. In this section, we
discuss how to eliminate these boxes.

A first observation is that, inside the FoldLeft pipeline, we
are free to choose any representation for our boxes, provided
we can reconstruct the original representation at the end
of the pipeline. In other words, we do not need to create
instances of Rep[Either[A, B]] or Rep[(K, V]) until the final
application of FoldLeft. In particular, by using CPS-encoded
versions of the boxes inside the pipeline, we can delay their
construction, much like we delay the construction of lists. To
illustrate this idea, we describe in this section a staged CPS
encoding for the Either type, and show how to use it in the
partition function.

5.1 EitherCPS
The CPS encoding for Either is given (unsurprisingly) by its
functor representation:

abstract class EitherCPS[A, B] {

def apply[X](lf: A => X, rf: B => X): X

}

EitherCPS is the function that abstracts over the eventual rep-
resentation, X. It takes two functions that represent the left
and right destructors yielding a value of type X.
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trait EitherCPSOps extends Base with IfThenElse

with BooleanOps {

abstract class EitherCPS[A: Manifest, B: Manifest] { self =>

def apply[X: Manifest](

lf: Rep[A] => Rep[X],

rf: Rep[B] => Rep[X]): Rep[X]

def map[C: Manifest, D: Manifest](

lmap: Rep[A] => Rep[C],

rmap: Rep[B] => Rep[D]) = new EitherCPS[C, D] {

def apply[X: Manifest](

lf: Rep[C] => Rep[X],

rf: Rep[D] => Rep[X]

) = self.apply(a => lf(lmap(a)), b => rf(rmap(b)))

}

}

//Companion object

object EitherCPS {

def LeftCPS[A: Manifest, B: Manifest](a: Rep[A]) =

new EitherCPS[A, B] {

def apply[X: Manifest](

lf: Rep[A] => Rep[X],

rf: Rep[B] => Rep[X]) = lf(a)

}

def RightCPS[A: Manifest, B: Manifest](b: Rep[B]) =

new EitherCPS[A, B] {

def apply[X: Manifest](

lf: Rep[A] => Rep[X],

rf: Rep[B] => Rep[X]) = rf(b)

}

def conditional[A: Manifest, B: Manifest](

cond: Rep[Boolean],

thenp: => EitherCPS[A, B],

elsep: => EitherCPS[A, B]

): EitherCPS[A, B] = {

import lms.ZeroVal

var l = ZeroVal[A]; var r = ZeroVal[B]

var isLeft = true

val lf = (a: Rep[A]) => { l = a; isLeft = true }

val rf = (b: Rep[B]) => { r = b; isLeft = false }

if (cond) thenp.apply[Unit](lf, rf)

else elsep.apply[Unit](lf, rf)

new EitherCPS[A, B] {

def apply[X: Manifest](

lf: Rep[A] => Rep[X],

rf: Rep[B] => Rep[X]) =

if (isLeft) lf(l) else rf(r)

}

}

}

}

Figure 6. An implementation of staged EitherCPS

Having staged FoldLeft, staging EitherCPS is straightfor-
ward. Figure 6 gives an implementation for EitherCPS. In
addition to map for functor application, and LeftCPS and
RightCPS that create closures, we define a conditional com-
binator which handles conditional expressions. A naive im-
plementation of conditional would simply wrap the condi-
tional expression into a new instance of EitherCPS, applying
its destructors in both branches. However, this duplicates
the destructor code, and can quickly lead to code explosion.
Instead, we bind the result of the respective branches to tem-
porary variables before creating an instance of EitherCPS.

5.2 Tying the knot
Getting back to FoldLeft, we can now implement partition

using EitherCPS. We face one final issue though. We may
think that partition can be written as follows:

def partitionCPS(p: Rep[A] => Rep[Boolean]):

FoldLeft[EitherCPS[A, A], S] = this map { elem =>

if (p(elem)) LeftCPS[A, A](elem) else RightCPS[A, A](elem)

}

However, FoldLeft expects a Rep type as its first argument.
In this case, it expects a Rep[EitherCPS[A, A]] but we pro-
vide a plain EitherCPS[A, A]. At this point, having chosen
LMS as our partial evaluation framework, we have no
choice but to define an LMS intermediate representation
for Rep[EitherCPS[A, A]]. Luckily, EitherCPS is already a code
generator. So it suffices to add a simple IR wrapper around
it which contains forwarder methods for every operator de-
fined on EitherCPS. Figure 7 shows the implementation of
this wrapper. We refer the interested reader to [12] for more
details on the LMS IR.

6. Related Work
Fusion, or deforestation, has been studied extensively. One
of the first known techniques is Wadler’s algorithm for elim-
inating intermediate trees [16]. For list-like pipelines, there
are three main algorithms: foldr/build fusion [5], which is
based on implementing list operations as folds. Its dual,
destroy/unfoldr fusion, fuses consumer functions such as
zips, well [13]. Stream fusion [1, 2] converts list operations
to operations on streams, and fuses both consumer and pro-
ducer functions well. All three have been implemented using
Haskell’s rewrite rule system [7]. Although in this paper we
only covered foldr/build fusion, we believe that our tech-
nique to the other two.

Fusion systems have also been studied theoretically. Mei-
jer et al. [8] propose a theoretical framework for func-
tional programs that are based on high-level recursive oper-
ations over algebras. The CPS-encoded datatypes (FoldLeft,
EitherCPS) used in this paper are instances of such algebras.
Hinze et al. provide a theoretical framework that unifies the
above mentioned fusion algorithms [6]. Ghani et al. gen-
eralise foldr/build fusion to other inductive datatypes [4].
Although in this paper we only treat lists, sums and pairs,
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trait EitherCPSOpsExp

extends EitherCPSOps

with BaseExp

with IfThenElseExpOpt

with BooleanOpsExpOpt

with EqualExp {

import EitherCPS._

//The wrapper acts as a Rep[EitherCPS[A, B]]

case class EitherWrapper[A, B](e: EitherCPS[A, B])

extends Def[EitherCPS[A, B]]

def mkLeft[A: Manifest, B: Manifest](a: Rep[A]) =

EitherWrapper(LeftCPS[A, B](a))

def mkRight[A: Manifest, B: Manifest](b: Rep[B]) =

EitherWrapper(RightCPS[A, B](b))

def eitherCPS_map[A: Manifest,

B: Manifest,

C: Manifest,

D: Manifest](

e: Rep[EitherCPS[A, B]],

lmap: Rep[A] => Rep[C],

rmap: Rep[B] => Rep[D]

): Rep[EitherCPS[C, D]] = e match {

case Def(EitherWrapper(sth)) =>

EitherWrapper(sth map (lmap, rmap))

}

def either_apply[A: Manifest, B: Manifest, X: Manifest](

e: Rep[EitherCPS[A, B]],

lf: Rep[A] => Rep[X],

rf: Rep[B] => Rep[X]

): Rep[X] = e match {

case Def(EitherWrapper(sth)) => sth.apply(lf, rf)

}

def __ifThenElse[A: Manifest, B: Manifest](

cond: Rep[Boolean],

thenp: => Rep[EitherCPS[A, B]],

elsep: => Rep[EitherCPS[A, B]]

): Rep[EitherCPS[A, B]] = (thenp, elsep) match {

case (Def(EitherWrapper(t)), Def(EitherWrapper(e))) =>

EitherWrapper(conditional(cond, t, e))

}

}

Figure 7. EitherWrapper: LMS IR wrapper around Either-
CPS

their work suggests that our technique can be extended to
other inductive datatypes.

LMS also proposes its own fusion algorithm for indexed
loops [11]. This algorithm performs both horizontal and ver-
tical fusion on representations of loops and provides facili-
ties for heterogeneous code generation. However, while the
framework embraces the "fusion as a library" approach, it
also relies heavily on LMS’ compiler infrastructure. Our
goal here was to avoid this kind of dependency, and imple-
ment a simple library based entirely on partial evaluation.

Partial evaluation and multi-stage programming have
been used with great success to optimise programs. The
general idea is to apply the first Futamura projection to turn
interpreters into compilers [3]. The LMS framework enables
us to compose code generators; we effectively operate in a
generative programming language [9].

Svensson et al. use defunctionalization to unify push and
pull arrays in an embedded DSL context [14]. Much like
our approach, their representation effectively turns a CPS-
encoded array into a code generator.

7. Conclusion and Future Work
We have shown how to implement fold-based fusion as a
library. The key is to represent data-structures using their
CPS-encodings. As a result, composition over these data
structures turns into function composition. We then partially
evaluate function composition to achieve vertical fusion.

The technique readily extends to multi-producers such as
partitioning and grouping operations by introducing addi-
tional boxes. By CPS-encoding the box types, we are once
again able to apply partial evaluation to eliminate intermedi-
ate data structures, and achieve horizontal fusion.

We used LMS as our staging/partial evaluation frame-
work of choice: our implementation is available as an open-
source project 1. Our approach is, however, not tied to a par-
ticular framework. Indeed, any system capable of partially
evaluating function composition is sufficient.

Our approach seems promising for other fusion tech-
niques as well. In particular, we plan to extend our work
to stream fusion, in hopes of making this powerful fusion
technique available to a broader range of applications.
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